# Adding Polynomials

To add polynomials you combine the like terms.

Example:

$(2x^2+3x+4) + (x^2-2x-5)$

Simplifies to

$3x^2 + x -1$

# Subtracting Polynomials

To subtract polynomials you add the opposite of each term.

Example

$(2x^2+3x+4) - (x^2 + 2x-5)$

Simplifies to

$2x^2 + 3x +4 -x^2 - 2x + 5$

and then further to

$x^2 + x + 9$

# Multiplying Polynomials

To multiply polynomials you have to do four different multiplications

**F** - First Pair

**O** - Outside Pair

**I** - Inside Pair

**L** - Last Pair

Example:

$(2x + 3)(4x - 1)$

First: $(2x)(4x) = 8x^2$

Outside: $(2x)(-1) = -2x$

Inside: $(3)(4x) = 12x$

Last: $(3)(-1) = -3$

Now add your results together:

$8x^2 - 2x + 12x -3$

and combine any like terms

$8x^2 + 10x -3$